A kutatócsoport 2012. július 1-én jött létre a Magyar Tudományos Akadémia támogatásával.

A csoport céljai közé tartozik az ipari, műszaki és egyéb területeken rendkívül fontos numerikus matematikai kutatások elméleti hátterének biztosítása, illetve az ebben a témában dolgozó hazai kutatók összefogása.

A parciális differenciálegyenlet-rendszerek közelítő megoldásaira a tudomány számos területén elengedhetetlen szükség van. A kutatócsoport elliptikus, valamint időfüggő parabolikus és hiperbolikus feladatok vizsgálatával foglalkozik számtalan új és meglévő eszköz alkalmazásával, mint például a prekondicionáló operátorokon alapuló iterációs módszerek, nemfolytonos végeselem-módszerek, operátorfélcsoport-elmélet, operátor-szeleteléses módszerek, Magnus-integrátorok és Richardson-extrapoláció. A kifejlesztett módszereknek számítógépes realizációi is készülnek, melyeket igyekszünk olyan, teljesen valós vagy minél valóságközelibb modellekre alkalmazni, mint például különböző légszennyeződési és üzemanyagcella-modellek, illetve a Maxwell-egyenletek.

A kutatócsoport munkájában fontos szerep jut a komplex hálózatokon időben fejlődő folyamatoknak is. A hálózati folyamatok differenciálegyenlet-rendszerekkel történő modellezése révén kapcsolódik össze a kutatás ezen ága az előzőekkel. A kutatások célja a hálózat struktúrájából adódó sajátságok felderítése, az adódó egyenletrendszerek kezelhetőségének biztosítása, illetve a hálózatok megbízhatóságának elemzése.

Kutatási témáink címszavakban: